题目内容
15.设正三角形ABC的外接圆内随机取一点,则此点落在正三角形ABC内的概率为$\frac{{3\sqrt{3}}}{4π}$.分析 设圆的半径为1,则S圆=π,S正三角形ABC=$\frac{3\sqrt{3}}{4}$,根据概率公式计算即可.
解答 解:设圆的半径为1,则S圆=π,
S正三角形ABC=3×$\frac{1}{2}$×1×1×sin120°=$\frac{3\sqrt{3}}{4}$.
∴随机向圆所在区域投一点,
则该点恰好落在△ABC内的概率P=$\frac{{3\sqrt{3}}}{4π}$,
故答案为:$\frac{{3\sqrt{3}}}{4π}$.
点评 本题给出几何概型,求点恰好落在△ABC内的概率.着重考查了正三角形的性质、三角形与圆的面积计算和几何概型的计算等知识,属于基础题.
练习册系列答案
相关题目
10.函数f(x)=Acos(ωx+φ)在区间[0,π]上的图象如图所示,则函数f(x)的解析式可能是( )

| A. | f(x)=2cos(2x+$\frac{π}{4}$) | B. | f(x)=-$\sqrt{2}$cos(x-$\frac{π}{4}$) | C. | f(x)=-$\sqrt{2}$cos(2x-$\frac{3π}{4}$) | D. | f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$) |
7.若存在实数x,y满足$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y-2>0}\\{m(x+1)-y=0}\\{\;}\end{array}\right.$,则实数m的取值范围是( )
| A. | (0,$\frac{2}{7}$) | B. | ($\frac{2}{7}$,$\frac{2}{3}$) | C. | ($\frac{2}{3}$,$\frac{4}{5}$) | D. | ($\frac{2}{7}$,$\frac{4}{5}$) |
5.
函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则$f(\frac{11π}{24})$的值为( )
| A. | $-\frac{{\sqrt{6}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | -1 |