题目内容

已知整数数列a0,a1,a2,…,a2014中,满足关系式a0=0,|a1|=|a0+1|,|a2|=|a1+1|,…,|a2014|=|a2013+1|,则|a1+a2+a3+…+a2014|的最小值为
 
考点:数列的求和
专题:等差数列与等比数列
分析:由a0=0,|a1|=|a0+1|,可得a1=±1;同理可得:a2,a3,a4,…,可得|a1+a2|的最小值为1;|a1+a2+a3+a4|的最小值为2;依此类推可得:|a1+a2+a3+…+a2014|的最小值.
解答: 解:由a0=0,|a1|=|a0+1|,可得a1=±1;同理可得:a2=±2,或0;a3=±3,±1;a4=±4,±2,0;…;
可得|a1+a2|的最小值为1;|a1+a2+a3+a4|的最小值为2;
依此类推可得:|a1+a2+a3+…+a2014|的最小值为1007.
故答案为:1007.
点评:本题考查了推式的应用、绝对值的意义、类比归纳推理,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网