题目内容
16.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则S5=( )| A. | 16 | B. | $\frac{16}{81}$ | C. | $\frac{81}{16}$ | D. | $\frac{1}{16}$ |
分析 Sn=2an+1,可得Sn=2(Sn+1-Sn),$\frac{{S}_{n+1}}{{S}_{n}}$=$\frac{3}{2}$,利用等比数列的通项公式即可得出.
解答 解:∵Sn=2an+1,∴Sn=2(Sn+1-Sn),$\frac{{S}_{n+1}}{{S}_{n}}$=$\frac{3}{2}$,
∴数列{Sn}是等比数列,首项为1,公比为$\frac{3}{2}$.
∴Sn=$(\frac{3}{2})^{n-1}$,
∴S5=$(\frac{3}{2})^{4}$=$\frac{81}{16}$.
故选:C.
点评 本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
5.原命题为“若两条直线的斜率相等,则这两条直线平行”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )
| A. | 真、假、真 | B. | 假、假、真 | C. | 真、真、假 | D. | 假、假、假 |
6.已知集合A={x|-2≤x≤3},B={x|x-2>0},则∁R(A∩B)=( )
| A. | {x|x≤2或x>3} | B. | {x|x≤-2或x>3} | C. | {x|x<2或x≥3} | D. | {x|x<-2或x≥3} |