题目内容
设实数x、y满足
,则z=max{2x+3y-1,x+2y+2}的取值范围是( )
|
| A、[2,5] |
| B、[2,9] |
| C、[5,9] |
| D、[-1,9] |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用作差法求出z的表达式,然后根据平移,根据数形结合即可得到结论.
解答:
解:作出不等式组对应的平面区域如图:
2x+3y-1-(x+2y+2)=x+y-3,
即z=max{2x+3y-1,x+2y+2}=
,
其中直线x+y-3=0过A,C点.
在直线x+y-3=0的上方,平移直线z=2x+3y-1(红线),当直线z=2x+3y-1经过点B(2,2)时,
直线z=2x+3y-1的截距最大,
此时z取得最大值为z=2×2+3×2-1=9.
在直线x+y-3=0的下方,平移直线z=x+2y+2(蓝线),当直线z=x+2y+2经过点O(0,0)时,
直线z=x+2y+2的截距最小,
此时z取得最小值为z=0+2=2.
即2≤z≤9,
故选:B.
2x+3y-1-(x+2y+2)=x+y-3,
即z=max{2x+3y-1,x+2y+2}=
|
其中直线x+y-3=0过A,C点.
在直线x+y-3=0的上方,平移直线z=2x+3y-1(红线),当直线z=2x+3y-1经过点B(2,2)时,
直线z=2x+3y-1的截距最大,
此时z取得最大值为z=2×2+3×2-1=9.
在直线x+y-3=0的下方,平移直线z=x+2y+2(蓝线),当直线z=x+2y+2经过点O(0,0)时,
直线z=x+2y+2的截距最小,
此时z取得最小值为z=0+2=2.
即2≤z≤9,
故选:B.
点评:本题主要考查线性规划的应用,根据z的几何意义确定对应的直线方程是截距本题的关键.难度较大.
练习册系列答案
相关题目
已知实数x,y满足不等式组
,且z=x-y的最小值为-3,则实数m的值为( )
|
| A、-1 | ||
B、-
| ||
| C、6 | ||
| D、7 |
“函数f(x)=logax在(0,+∞)上是增函数”是“函数g(x)=x2+2ax+1在(1,+∞)上是增函数”的( )
| A、充分但不必要条件 |
| B、必要但不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
下列说法错误的是( )
| A、如果直线上的两点在一个平面内,那么此直线在平面内 |
| B、过空间中三点,有且只有一个平面 |
| C、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 |
| D、平行于同一条直线的两条直线互相平行 |