题目内容
7.从标有1、2、3、4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是( )| A. | $\frac{1}{4},\frac{1}{4},\frac{1}{2}$ | B. | $\frac{1}{4},\frac{1}{4},\frac{1}{4}$ | C. | $\frac{1}{3},\frac{1}{3},\frac{1}{2}$ | D. | $\frac{1}{4},\frac{1}{3},\frac{1}{2}$ |
分析 利用等可能事件概率计算公式、相互独立事件概率乘法公式,互斥事件概率加法公式求解.
解答 解:从标有1、2、3、4的卡片中不放回地先后抽出两张卡片,
则4号卡片“第一次被抽到的概率”p1=$\frac{1}{4}$,
“第二次被抽到的概率”${p}_{2}=\frac{3}{4}×\frac{1}{3}=\frac{1}{4}$,
“在整个抽样过程中被抽到的概率”p3=$\frac{1}{4}+\frac{3}{4}×\frac{1}{4}$=$\frac{1}{2}$.
故选:A.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式、相互独立事件概率乘法公式,互斥事件概率加法公式的合理运用.
练习册系列答案
相关题目
19.
2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示:
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
| 关注民生 | 不关注民生 | 合计 | |
| 青少年组 | 90 | 30 | 120 |
| 中老年组 | 70 | 10 | 80 |
| 合计 | 160 | 40 | 200 |
| p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.用秦九韶算法计算多项式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4时的值时,运算总次数为( )
| A. | 11 | B. | 12 | C. | 26 | D. | 27 |
12.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
按分层抽样的方法在这个月生产的A,B,C三类轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)分别求从B,C类轿车中抽取的车辆数.
| 轿车A | 轿车B | 轿车C | |
| 舒适型 | 100 | 150 | z |
| 标准型 | 300 | 450 | 600 |
(Ⅰ)求z的值;
(Ⅱ)分别求从B,C类轿车中抽取的车辆数.
16.已知圆M过定点(0,1)且圆心M在抛物线x2=2y上运动,若x轴截圆M所得的弦为|PQ|,则弦长|PQ|等于( )
| A. | 2 | B. | 3 | ||
| C. | 4 | D. | 与点位置有关的值 |