题目内容

已知ABCD为矩形,PA⊥平面ABCD,AE⊥PB于点E,EF⊥PC于点F.
(1)求证:AF⊥PC;
(2)设平面AEF交PD于点G,求证:AG⊥PD.
考点:直线与平面垂直的性质
专题:证明题,空间位置关系与距离
分析:(1)由ABCD为矩形,得BC⊥AB有PA⊥平面ABCD可知BC⊥平面PAB,从而AE⊥BC,可证AE⊥PC,从而有EF⊥PC,从而证明AF⊥PC;
(2)由ABCD为矩形,可证CD⊥平面PAD,得CD⊥AG,可知PC⊥AG,从而AG⊥平面PCD,可证AG⊥PD.
解答: 解:(1)∵ABCD为矩形
∴BC⊥AB
∵PA⊥平面ABCD
∴BC⊥PA
∴BC⊥平面PAB
∴AE⊥BC
又AE⊥PB
∴AE⊥平面PBC
∴AE⊥PC
又EF⊥PC
∴PC⊥平面AEF
∴AF⊥PC
(2)、∵ABCD为矩形
∴CD⊥AD
∵PA⊥平面ABCD
∴CD⊥PA
∴CD⊥平面PAD
∴CD⊥AG
∵PC⊥平面AEF
∴PC⊥AG
∴AG⊥平面PCD
∴AG⊥PD
点评:本题主要考查了直线与平面垂直的性质,直线与平面垂直的判定,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网