题目内容
15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左焦点为F,若点F关于直线$y=-\frac{1}{2}x$的对称点P在椭圆C上,则椭圆C的离心率为( )| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
分析 求出F关于直线$y=-\frac{1}{2}x$的对称点P的坐标,代入椭圆方程,整理可得椭圆C的离心率.
解答 解:椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左焦点F(-c,0),
设F关于$y=-\frac{1}{2}x$的对称点P(x0,y0),
则$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=-\frac{1}{2}•\frac{{x}_{0}-c}{2}}\\{\frac{{y}_{0}}{{x}_{0}+c}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=-\frac{3}{5}c}\\{{y}_{0}=\frac{4}{5}c}\end{array}\right.$.
∴P($-\frac{3}{5}c,\frac{4}{5}c$),代入椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,得
$\frac{9{c}^{2}}{25{a}^{2}}+\frac{16{c}^{2}}{25{b}^{2}}=1$,即9b2c2+16a2c2=25a2b2.
∴9(a2-c2)c2+16a2c2=25a2(a2-c2).
整理得:(e2-5)(9e2-5)=0.
解得e2=5(舍)或${e}^{2}=\frac{5}{9}$,
∴$e=\frac{\sqrt{5}}{3}$.
故选:D.
点评 本题考查椭圆的简单性质,训练了点关于直线的对称点的求法,是中档题.
练习册系列答案
相关题目
5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),x=$\sqrt{3}$y为双曲线C的一条渐近线,则双曲线C的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
20.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(1,+∞)上为增函数,则实数a的取值范围是( )
| A. | [2,+∞) | B. | (2,+∞) | C. | (-∞,2] | D. | (-∞,2) |
7.设$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,若$\overrightarrow a与\overrightarrow b的夹角为\frac{π}{3}$,则$\overrightarrow a•({\overrightarrow a+\overrightarrow b})$的值等于( )
| A. | 4 | B. | 5 | C. | 6 | D. | $4+\sqrt{3}$ |
4.
已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的导函数的部分图象如图所示,E是最高点,且△MNE是边长为1的正三角形,那么$f({\frac{1}{3}})$=( )
| A. | $-\frac{{\sqrt{3}}}{2π}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $-\frac{3}{4π}$ |