题目内容

5.设函数$f(x)=tan\frac{x}{4}•{cos^2}\frac{x}{4}-2{cos^2}({\frac{x}{4}+\frac{π}{12}})+1$.
(Ⅰ)求f(x)的定义域及最小正周期;
(Ⅱ)求f(x)在区间[-π,0]上的最值.

分析 (1)先将函数化简,再求f(x)的定义域及最小正周期;
(2)f(x)在区间[-π,0]的单调性,再利用正弦函数的性质,即可求出最值

解答 解:(Ⅰ)$f(x)=2sin\frac{x}{4}cos\frac{x}{4}-cos({\frac{x}{2}+\frac{π}{6}})$=$sin\frac{x}{2}-cos({\frac{x}{2}+\frac{π}{6}})=sin\frac{x}{2}-\frac{{\sqrt{3}}}{2}cos\frac{x}{2}+\frac{1}{2}sin\frac{x}{2}=\sqrt{3}sin({\frac{x}{2}-\frac{π}{6}})$,
由$\frac{x}{4}≠\frac{π}{2}+kπ({k∈Z})$得f(x)的定义域为{x|x≠2π+4kπ(k∈Z)}
故f(x)的最小正周期为$T=\frac{2π}{{\frac{1}{2}}}=4π$,
(Ⅱ)∵-π≤x≤0,∴$-\frac{2π}{3}≤\frac{x}{2}-\frac{π}{6}≤-\frac{π}{6}$,
∴$\frac{x}{2}-\frac{π}{6}∈[{-\frac{2π}{3},-\frac{π}{2}}],即x∈[{-π,-\frac{2π}{3}}],f(x)单调递减$,
∴$\frac{x}{2}-\frac{π}{6}∈[{-\frac{π}{2},-\frac{π}{6}}],即x∈[{-\frac{2π}{3},0}],f(x)单调递增$,
∴$f{(x)_{min}}=f(-\frac{2π}{3})=-\sqrt{3}$,
∴$f(0)=-\frac{{\sqrt{3}}}{2},f(-π)=-\frac{3}{2}$,
∴$f{(x)_{max}}=f(0)=-\frac{{\sqrt{3}}}{2}$

点评 本题考查三角函数的化简,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网