题目内容
18.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因32+33+34不产生进位现象;23不是“开心数”.因23+24+25产生进位现象,那么,小于100的“开心数”的个数为( )| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
分析 首先根据题意求出个位数和十位数满足的条件,然后根据能构成“开心数”的条件求出不超过100的“开心数”的个数.
解答 解:根据题意个位数需要满足要求:
∵n+(n+1)+(n+2)<10,即n<2.3,
∴个位数可取0,1,2三个数,
∵十位数需要满足:3n<10,
∴n<3.3,
∴十位可以取0,1,2,3四个数,
故四个数的“开心数”共有3×4=12个.
故选:D.
点评 本题主要考查排列组合的简单计数问题,题目中定义了一个新的概念,对于此类题目要注意认真理解概念再做题目.属于中档题目题考查推理能力,考查进行简单的合情推理,考查学生分析解决问题的能力,考查命题的真假判断及应用,是中档题.
练习册系列答案
相关题目
2.两条相交直线的平行投影是( )
| A. | 两条相交直线 | B. | 一条直线 | ||
| C. | 一条折线 | D. | 两条相交直线或一条直线 |
6.从一堆苹果中任取10只,称得它们的质量如下(单位:克)125 120 122 105 130 114 116 95 120 134则样本数据落在[116.5,124.5)内的频率为( )
| A. | 0.2 | B. | 0.3 | C. | 0.4 | D. | 0.5 |
13.已知$f(n)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+…$$+\frac{1}{{{{({n-1})}^2}}}+\frac{1}{n^2}+\frac{1}{{{{({n-1})}^2}}}$$+…+\frac{1}{3^2}+\frac{1}{2^2}+\frac{1}{1^2}$(n∈N*),则当k∈N*时,f(k+1)-f(k)等于( )
| A. | $\frac{1}{{({{k^2}+1})}}$ | B. | $\frac{1}{k^2}$ | C. | $\frac{1}{{{{({k-1})}^2}}}+\frac{1}{k^2}$ | D. | $\frac{1}{{{{({k+1})}^2}}}+\frac{1}{k^2}$ |
7.某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如2×2列联表所示(单位:人).
(1)求m,n;
(2)你有多大把握认为“教学方式与成绩有关系”?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
其中n=a+b+c+d为样本容量.
| 80及80分以下 | 80分以上 | 合计 | |
| 试验班 | 35 | 15 | 50 |
| 对照班 | 15 | m | 50 |
| 合计 | 50 | 50 | n |
(2)你有多大把握认为“教学方式与成绩有关系”?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
其中n=a+b+c+d为样本容量.
| p(K2≥k) | … | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … |
| k | … | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
8.4个人排成一队,其中甲与乙相邻,且甲与丙不相邻的排法有( )
| A. | 8种 | B. | 12种 | C. | 16种 | D. | 24种 |