题目内容

18.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因32+33+34不产生进位现象;23不是“开心数”.因23+24+25产生进位现象,那么,小于100的“开心数”的个数为(  )
A.9B.10C.11D.12

分析 首先根据题意求出个位数和十位数满足的条件,然后根据能构成“开心数”的条件求出不超过100的“开心数”的个数.

解答 解:根据题意个位数需要满足要求:
∵n+(n+1)+(n+2)<10,即n<2.3,
∴个位数可取0,1,2三个数,
∵十位数需要满足:3n<10,
∴n<3.3,
∴十位可以取0,1,2,3四个数,
故四个数的“开心数”共有3×4=12个.
故选:D.

点评 本题主要考查排列组合的简单计数问题,题目中定义了一个新的概念,对于此类题目要注意认真理解概念再做题目.属于中档题目题考查推理能力,考查进行简单的合情推理,考查学生分析解决问题的能力,考查命题的真假判断及应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网