题目内容
13.若(x3+$\frac{1}{\sqrt{x}}$)n的展开式中含有常数项,且n的最小值为a,则${∫}_{-a}^{a}$$\sqrt{{a}^{2}-{x}^{2}}$dx=( )| A. | 0 | B. | $\frac{686}{3}$ | C. | $\frac{49π}{2}$ | D. | 49π |
分析 首先利用二项式定理求出a,然后利用几何意义求定积分.
解答 解:因为(x3+$\frac{1}{\sqrt{x}}$)n的展开式中含有常数项,且n的最小值为a,由${C}_{n}^{r}{x}^{3(n-r)}\frac{1}{\sqrt{{x}^{r}}}={C}_{n}^{r}{x}^{3n-\frac{7}{2}r}$得到6n=7r,所以n的最小值为7,所以${∫}_{-a}^{a}$$\sqrt{{a}^{2}-{x}^{2}}$dx=${∫}_{-7}^{7}\sqrt{{7}^{2}-{x}^{2}}dx$=$\frac{1}{2}×π×{7}^{2}=\frac{49π}{2}$;
故选C.
点评 本题考查了二项式定理以及利用几何意义求定积分;属于中档题.
练习册系列答案
相关题目
4.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,${a^2}+{c^2}-{b^2}=\sqrt{3}bc$,则cosA+sinC的取值范围为( )
| A. | $({\frac{3}{2},\sqrt{3}})$ | B. | $({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$ | C. | $({\frac{3}{2},\sqrt{3}}]$ | D. | $({\frac{{\sqrt{3}}}{2},\sqrt{3}})$ |
5.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0)作圆x2+y2=$\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P.且满足$\overrightarrow{OP}=\overrightarrow{FE}+\overrightarrow{OE}$,则双曲线的渐近线方程为( )
| A. | $\sqrt{10}$x±2y=0 | B. | 2x±$\sqrt{10}$y=0 | C. | $\sqrt{6}$x±2y=0 | D. | 2x±$\sqrt{6}$y=0 |
2.已知α,β,γ为不同的平面,m,n为不同的直线,则m⊥β的一个充分条件是( )
| A. | α∩γ=m,α⊥γ,β⊥γ | B. | α⊥β,β⊥γ,m⊥α | C. | α⊥β,α∩β=n,m⊥n | D. | n⊥α,n⊥β,m⊥α |
3.假设你家订了一份牛奶,送奶人在早上6:30~7:30之间随机地把牛奶送到你家,而你在早上7:00~8:00之间随机离家上学,则你在离家前能收到牛奶的概率是( )
| A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |