题目内容
5.当$x∈[-\frac{π}{3},\frac{π}{3}]$时,函数$f(x)=\sqrt{2}sin\frac{x}{4}cos\frac{x}{4}+\sqrt{6}{cos^2}\frac{x}{4}-\frac{{\sqrt{6}}}{2}$的最小值为( )| A. | $-\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
分析 根据三角恒等变换化简函数f(x)为正弦型函数,根据$x∈[-\frac{π}{3},\frac{π}{3}]$求出函数f(x)的最小值.
解答 解:函数$f(x)=\sqrt{2}sin\frac{x}{4}cos\frac{x}{4}+\sqrt{6}{cos^2}\frac{x}{4}-\frac{{\sqrt{6}}}{2}$
=$\frac{\sqrt{2}}{2}$sin$\frac{x}{2}$+$\frac{\sqrt{6}}{2}$(1+cos$\frac{x}{2}$)-$\frac{\sqrt{6}}{2}$
=$\sqrt{2}$($\frac{1}{2}$sin$\frac{x}{2}$+$\frac{\sqrt{3}}{2}$cos$\frac{x}{2}$)
=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$),
当$x∈[-\frac{π}{3},\frac{π}{3}]$时,$\frac{x}{2}$+$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴sin($\frac{x}{2}$+$\frac{π}{3}$)∈[$\frac{1}{2}$,1];
∴函数f(x)=$\sqrt{2}$sin($\frac{x}{2}$-$\frac{π}{3}$)的最小值为$\frac{\sqrt{2}}{2}$.
故选:B.
点评 本题考查了三角恒等变以及正弦型函数的图象与性质的应用问题,是基础题.
练习册系列答案
相关题目
13.将函数f(x)=sin2x+$\sqrt{3}$cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移$\frac{π}{6}$个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是( )
| A. | x=一$\frac{π}{6}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{24π}{25}$ | D. | x=$\frac{π}{3}$ |
10.一个球的体积、表面积分别为V、S,若函数V=f(S),f'(S)是f(S)的导函数,则f'(π)=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | π |