题目内容

13.将函数f(x)=sin2x+$\sqrt{3}$cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移$\frac{π}{6}$个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是(  )
A.x=一$\frac{π}{6}$B.x=$\frac{π}{6}$C.x=$\frac{24π}{25}$D.x=$\frac{π}{3}$

分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得g(x)图象的一条对称轴方程.

解答 解:将函数f(x)=sin2x+$\sqrt{3}$cos2x=2($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)=2sin(2x+$\frac{π}{3}$)的图象上
所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x+$\frac{π}{3}$)的图象;
再将图象上所有点向右平移$\frac{π}{6}$个单位长度,
得到函数g (x)=2sin(x-$\frac{π}{6}$+$\frac{π}{3}$)=2sin(x+$\frac{π}{6}$)的图象的图象的图象,
令x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=kπ+$\frac{π}{3}$,k∈Z.
令k=0,可得g(x)图象的一条对称轴方程是x=$\frac{π}{3}$,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网