题目内容
8.已知函数f(x)=lnx-mx+1在x=1处取得极值.(Ⅰ)求曲线y=f(x)在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)求证:f(x)≤0.
分析 (I)f′(x)=$\frac{1}{x}$-m,则f′(1)=1-m=0,解得m.可得f(x)=lnx-x+1,${f}^{′}(\frac{1}{e})$,$f(\frac{1}{e})$,利用点斜式即可得出.
(II)由(I)可得:f(x)=lnx-x+1,f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,利用导数研究其单调性极值与最值,只要证明f(x)max≤0即可.
解答 (I)解:f′(x)=$\frac{1}{x}$-m,则f′(1)=1-m=0,解得m=1.
∴f(x)=lnx-x+1,${f}^{′}(\frac{1}{e})$=e-1,$f(\frac{1}{e})$=-1-$\frac{1}{e}$+1=-$\frac{1}{e}$,
∴曲线y=f(x)在x=$\frac{1}{e}$处的切线方程为:y+$\frac{1}{e}$=(e-1)(x-$\frac{1}{e}$).
(II)证明:由(I)可得:f(x)=lnx-x+1,
f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
可得:0<x<1时,f′(x)>0,函数f(x)单调递增;1<x时,f′(x)<0,函数f(x)单调递减.
∴x=1时,函数f(x)取得极大值即最大值.
∴f(x)max=f(1)=0.
∴f(x)≤0.
点评 本题考查了利用导数研究函数的单调性极值与最值及其切线方程,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
3.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{x-2y+3≥0}\end{array}\right.$,那么点P到直线3x-4y-9=0的距离的最小值为( )
| A. | 1 | B. | 2 | C. | $\frac{12}{5}$ | D. | $\frac{14}{5}$ |
13.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),且导函数f'(x)=Aωcos(ωx+φ)的部分图象如图所示,则函数f(x)的解析式为( )
| A. | $f(x)=cos({2x-\frac{π}{6}})$ | B. | $f(x)=sin({2x+\frac{π}{6}})$ | C. | $f(x)=\frac{1}{2}cos({2x+\frac{π}{6}})$ | D. | $f(x)=\frac{1}{2}sin({2x-\frac{π}{6}})$ |
17.如果三点A(1,5,-2),B(2,4,1),C(a,3,b+2)在同一直线上,则( )
| A. | a=3,b=-3 | B. | a=6,b=-1 | C. | a=3,b=2 | D. | a=-2,b=1 |
18.cos70°sin40°-sin70°sin130°等于 ( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |