题目内容

12.如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.
(1)求证:平面PAB∥平面EFG;
(2)证明:平面EFG⊥平面PAD;
(3)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明.

分析 (1)运用面面平行的判定定理,先证线面平行,即可得到证明;
(2)由线面垂直的性质和面面垂直的判定定理,即可得证;
(3)Q为线段PB中点时,PC⊥平面ADQ.运用线面垂直的判定定理即可得到结论.

解答 证明:(1)E,F分别是线段PC,PD的中点,所以EF∥CD,
又ABCD为正方形,AB∥CD,
所以EF∥AB,
又EF?平面PAB,所以EF∥平面PAB.
因为E,G分别是线段PC,BC的中点,所以EG∥PB,
又EG?平面PAB,所以,EG∥平面PAB.
所以平面EFG∥平面PAB;
(2)因为CD⊥AD,CD⊥PD,AD∩PD=D,所以CD⊥平面PAD,
又EF∥CD,所以EF⊥平面PAD,所以平面EFG⊥平面PAD;
(3)Q为线段PB中点时,PC⊥平面ADQ.
取PB中点Q,连接DE,EQ,AQ,
由于EQ∥BC∥AD,所以ADEQ为平面四边形,
由PD⊥平面ABCD,得AD⊥PD,
又AD⊥CD,PD∩CD=D,所以AD⊥平面PDC,
所以AD⊥PC,
又三角形PDC为等腰直角三角形,E为斜边中点,所以DE⊥PC,
AD∩DE=D,所以PC⊥平面ADQ.

点评 本题考查线面位置关系的证明,主要是面面平行和面面垂直、以及线面垂直的证明,注意运用转化思想,考查推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网