题目内容
已知函数f(x)=2sinx-x,g(x)=f(x)-(2-
).
(1)讨论g(x)在(0,
)内和在(
,
)内的零点情况.
(2)设x0是g(x)在(0,
)内的一个零点,求f(x)在[x0,
]上的最值.
(3)证明对n∈N*恒有n-
+
<
cos
<(
+
)n-
+1.
| π |
| 2 |
(1)讨论g(x)在(0,
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
(2)设x0是g(x)在(0,
| π |
| 6 |
| π |
| 2 |
(3)证明对n∈N*恒有n-
| n |
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
| ||
| 2 |
| π |
| 12 |
| n+1 |
考点:不等式的证明,利用导数研究函数的单调性
专题:证明题,函数的性质及应用
分析:(1)由g'(x)=2cosx-1=0,知g(x)在(0,
)有唯一零点x=
,进一步分析其在(0,
)内和在(
,
)内的单调情况即可得到g(x)在(0,
)内和在(
,
)内的零点情况.
(2)由(1)的结论知f(x)在[x0,
]的最小值应为min{f(x0),f(
)},进一步分析可得f(x)在[x0,
]的最小值f(x0)=f(
)=2-
.
(3)由(2)知x∈[x0,
]时,有2-
≤f(x)≤
-
,即
x+1-
≤sinx≤
x+
-
①,于是可得n-
≤
cos
≤(
+
)n-
②,再利用放缩法可证得
cos
<(
+
)n-(
-1) ③与
cos
>n-
(2
-1)=n-
+
④,从而可证得结论成立.
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
(2)由(1)的结论知f(x)在[x0,
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
(3)由(2)知x∈[x0,
| π |
| 2 |
| π |
| 2 |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
| n |
| k=1 |
| 1 | ||
|
| ||
| 2 |
| π |
| 12 |
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
②,再利用放缩法可证得
| n |
| k=1 |
| 1 | ||
|
| ||
| 2 |
| π |
| 12 |
| n+1 |
| n |
| k=1 |
| 1 | ||
|
| 1 |
| 2 |
| n |
| n |
| 1 |
| 2 |
解答:
(1)解:g'(x)=2cosx-1在(0,
)有唯一零点x=
,易知g(x)在(0,
)单增而在(
,
)内单减,且g(
)=(
-
)-(2-
)>0,
故g(x)在(0,
)和[
,
)内都至多有一个零点.
又g(0)<0,g(
)=(1-
)-(2-
)=
-1>0,故g(x)在(0,
)内有唯一零点;再由g(
)=0知g(x)在(
,
)内无零点.
(2)由(1)知g(x)在[0,
]有最大值g(
)=(
-
)-(2-
),故f(x)在[x0,
]有最大值f(
)=
-
;
再由(1)的结论知f(x)在[x0,
]的最小值应为min{f(x0),f(
)}.由g(x0)=0知f(x0)=2-
=f(
),于是f(x)在[x0,
]的最小值f(x0)=f(
)=2-
.
(3)证明:由(2)知x∈[x0,
]时,有2-
≤f(x)≤
-
,即
x+1-
≤sinx≤
x+
-
①
取xk=
-
(k∈N*),则xk<
且xk≥
-1>
>x0,将xk的值代入①中,可得1-
≤cos
≤
+
-
⇒n-
≤
cos
≤(
+
)n-
②
再由
=
>2
=2
(
-
)=2(
-1),得
cos
<(
+
)n-(
-1) ③
相仿地,n≥2时,
=1+
<1+2
(
-
)=2
-1,故
cos
>n-
(2
-1)=n-
+
④
而n=1时④即cos1>cos600=
,显然也成立.故原不等式成立.
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 3 |
| π |
| 3 |
| π |
| 2 |
故g(x)在(0,
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
又g(0)<0,g(
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(2)由(1)知g(x)在[0,
| π |
| 2 |
| π |
| 3 |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
| 3 |
| π |
| 3 |
再由(1)的结论知f(x)在[x0,
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
(3)证明:由(2)知x∈[x0,
| π |
| 2 |
| π |
| 2 |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
取xk=
| π |
| 2 |
| 1 | ||
|
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| 1 | ||
2
|
| 1 | ||
|
| ||
| 2 |
| π |
| 12 |
| 1 | ||
2
|
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
| n |
| k=1 |
| 1 | ||
|
| ||
| 2 |
| π |
| 12 |
| 1 |
| 2 |
| n |
| k=1 |
| 1 | ||
|
再由
| n |
| k=1 |
| 1 | ||
|
| n |
| k=1 |
| 2 | ||
2
|
| n |
| k=1 |
| 1 | ||||
|
| n |
| k=1 |
| k+1 |
| k |
| n+1 |
| n |
| k=1 |
| 1 | ||
|
| ||
| 2 |
| π |
| 12 |
| n+1 |
相仿地,n≥2时,
| n |
| k=1 |
| 1 | ||
|
| n |
| k=2 |
| 2 | ||
2
|
| n |
| k=2 |
| k |
| k-1 |
| n |
| n |
| k=1 |
| 1 | ||
|
| 1 |
| 2 |
| n |
| n |
| 1 |
| 2 |
而n=1时④即cos1>cos600=
| 1 |
| 2 |
点评:本题考查不等式的证明,着重考查利用导数研究函数单调性与极值,突出放缩法在证明不等式中的应用,考查抽象思维、逻辑思维、创新思维能力的综合运用,属于难题.
练习册系列答案
相关题目
若函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则b-a=( )
| A、-6 | B、15 |
| C、-9或12 | D、-6或15 |