题目内容

18.函数f(x)=2x3-3x2-12x+5在[0,2]上的最大值和最小值分别是(  )
A.12,-15B.5,-15C.12,-5D.5,-16

分析 对函数求导,利用导数求研究函数y=2x3-3x2-12x+5在[0,2]上的单调性,判断出最大值与最小值位置,代入算出结果.

解答 解:由题设知y'=6x2-6x-12,
令y'>0,解得x>2,或x<-1,
故函数y=2x3-3x2-12x+5在[0,2]上减,
当x=0,y=5;当x=2,y=-15.
由此得函数y=2x3-3x2-12x+5在[0,2]上的最大值和最小值分别是5,-15;
故选:B.

点评 考查用导数研究函数的单调性求最值,本题是导数一章中最基本的题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网