题目内容
设f(x)=
,利用倒序相加法(课本中推导等差数列前n项和的方法),可求得f(
)+f(
)+f(
)+…f(
)的值为
| 4x |
| 4x+2 |
| 1 |
| 2015 |
| 2 |
| 2015 |
| 3 |
| 2015 |
| 2014 |
| 2015 |
1007
1007
.分析:可证f(x)+f(1-x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案.
解答:解:∵f(x)=
,
∴f(x)+f(1-x)=
+
=
+
=
+
=
+
=
=1
故可得f(
)+f(
)+f(
)+…f(
)
=f(
)+f(
)+f(
)+f(
)+…+f(
)+f(
)
=1007×1=1007
| 4x |
| 4x+2 |
∴f(x)+f(1-x)=
| 4x |
| 4x+2 |
| 41-x |
| 41-x+2 |
=
| 4x |
| 4x+2 |
| 41-x•4x |
| (41-x+2)•4x |
=
| 4x |
| 4x+2 |
| 4 |
| 4+2•4x |
| 4x |
| 4x+2 |
| 2 |
| 2+4x |
=
| 4x+2 |
| 4x+2 |
故可得f(
| 1 |
| 2015 |
| 2 |
| 2015 |
| 3 |
| 2015 |
| 2014 |
| 2015 |
=f(
| 1 |
| 2015 |
| 2014 |
| 2015 |
| 2 |
| 2015 |
| 2013 |
| 2015 |
| 1002 |
| 2015 |
| 1003 |
| 2015 |
=1007×1=1007
点评:本题考查倒序相加法求和,得出f(x)+f(1-x)=1并得出所求即为1007对项的和是解决问题的关键,属中档题.
练习册系列答案
相关题目