题目内容
若规定=|ad-bc|,则不等式log<0的解集为________.
(0,1)∪(1,2)
已知等差数列{an}首项为a,公差为b,等比数列{bn}首项为b,公比为a,其中a、b都是大于1的正整数,且a1<b1,b2<a3,那么a=________;若对于任意的n∈N*,总存在m∈N*,使得bn=am+3成立,则an=________.
若a>0且a≠1,b>0,则“logab>0”是“(a-1)(b-1)>0”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}=( )
A.{x|x<-2或x>4} B.{x|x<0或x>4}
C.{x|x<0或x>6} D.{x|x<-2或x>2}
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0,且0<x<m<n<,比较f(x)与m的大小.
已知a≥0,b≥0,且a+b=2,则( )
A.ab≤ B.ab≥
C.a2+b2≥2 D.a2+b2≤3
已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.
如图所示,已知D是面积为1的△ABC的边AB的中点,E是边AC上任一点,连接DE,F是线段DE上一点,连接BF,设=λ1,=λ2,且λ1+λ2=,记△BDF的面积为S=f(λ1,λ2),则S的最大值是________.
如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.