题目内容

已知a,b∈N*,f(a+b)=f(a)f(b),f(1)=2,则
2014
i=1
f(i+1)
f(i)
等于
 
考点:函数的值
专题:函数的性质及应用
分析:由已知条件推导出
f(n)
f(n-1)
=2,由此能求出
2014
i=1
f(i+1)
f(i)
=2014×2=4028.
解答: 解:∵a,b∈N*,f(a+b)=f(a)f(b),f(1)=2,
∴f(2)=f(1)•f(1)=2,
f(3)=f(2)•f(1)=8,
f(4)=f(2)•f(2)=16,
f(5)=f(2)•f(3)=32,

f(n)
f(n-1)
=2,
2014
i=1
f(i+1)
f(i)
=2014×2=4028.
故答案为:4028.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网