题目内容
设数列{an}中,a1=a,an+1+2an=2n+1(n∈N*).
(Ⅰ)若a1,a2,a3成等差数列,求实数a的值;
(Ⅱ)试问数列{
-
}能否为等比数列.若是等比数列,请写出相应数列{an}的通项公式;若不能,请说明理由.
(Ⅰ)若a1,a2,a3成等差数列,求实数a的值;
(Ⅱ)试问数列{
| an |
| 2n |
| 1 |
| 2 |
分析:(Ⅰ)根据a1=a,an+1+2an=2n+1,对n取值,再利用a1,a2,a3成等差数列,即可求实数a的值;
(Ⅱ)条件等价于
-
=-(
-
),故若{
-
}是以
-
=
-
为首项,-1为公比的等比数列,则必须首项不为0,从而可得结论.
(Ⅱ)条件等价于
| an+1 |
| 2n+1 |
| 1 |
| 2 |
| an |
| 2n |
| 1 |
| 2 |
| an |
| 2n |
| 1 |
| 2 |
| a1 |
| 2 |
| 1 |
| 2 |
| a |
| 2 |
| 1 |
| 2 |
解答:解:(Ⅰ)∵a1=a,an+1+2an=2n+1,
∴a2+2a1=22,a3+2a2=23,
∴a2=-2a+4,a3=4a,
∵2a2=a1+a3,∴2(-2a+4)=a+4a,∴a=
(4分)
(Ⅱ)因为an+1+2an=2n+1(n∈N*),所以
+
=1,(6分)
得:
-
=-(
-
),故若{
-
}是以
-
=
-
为首项,-1为公比的等比数列,则必须a≠1.
故a≠1时,数列{
-
}为等比数列,此时an=2n[
+(
-
)•(-1)n-1],否则当a=1时,数列{
-
}的首项为0,该数列不是等比数列.
∴a2+2a1=22,a3+2a2=23,
∴a2=-2a+4,a3=4a,
∵2a2=a1+a3,∴2(-2a+4)=a+4a,∴a=
| 8 |
| 9 |
(Ⅱ)因为an+1+2an=2n+1(n∈N*),所以
| an+1 |
| 2n+1 |
| an |
| 2n |
得:
| an+1 |
| 2n+1 |
| 1 |
| 2 |
| an |
| 2n |
| 1 |
| 2 |
| an |
| 2n |
| 1 |
| 2 |
| a1 |
| 2 |
| 1 |
| 2 |
| a |
| 2 |
| 1 |
| 2 |
故a≠1时,数列{
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| a |
| 2 |
| 1 |
| 2 |
| an |
| 2n |
| 1 |
| 2 |
点评:本题考查数列递推式,考查等比数列的判断,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目