题目内容

如图,在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进10
3
m至D点,测得顶端A的仰角为4θ,求建筑物AE的高度.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:由题意及仰角的定义,利用数形结合的思想,利用图形中角与角的联系,求出θ=15°,即可得出结论.
解答: 解:由已知BC=30米,CD=10
3
米,∠ABE=θ,∠ACE=2θ,∠ADE=4θ,
在Rt△ABE中,BE=AEcotθ,
在Rt△ACE中,CE=AEcot2θ,
∴BC=BE-CE=AE(cotθ-cot2θ).
同理可得:CD=AE(cot2θ-cot4θ).
BC
DC
=
AE(cotθ-cot2θ)
AE(cot2θ-cot4θ)

cotθ-cot2θ
cot2θ-cot4θ
=
3

而cotθ-cot2θ=
cosθ
sinθ
-
cos2θ
sin2θ
=
sin2θcosθ-cos2θsinθ
sinθsin2θ
=
1
sin2θ

同理可得cot2θ-cot4θ=
1
sin4θ

sin4θ
sin2θ
=2cos2θ=
3

∴cos2θ=
3
2
,结合题意可知:2θ=30°,θ=15°,
∴AE=
BC
cotθ-cot2θ
=BCsin2θ
=15m.
点评:本题考查了学生会从题意中抽取出图形进而分析问题,考查了学生们利用三角形解出三角形的边与角,及二倍角的正切公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网