题目内容
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
为直线
的倾斜角),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程,并求
时直线
的普通方程;
(2)若直线
和曲线
交于两点
,点
的直角坐标为
,求
的最大值.
【答案】(1)
;
(2)![]()
【解析】
(1)由
,可得
,两边同时乘以
,然后结合极坐标与直角坐标的互化公式可得曲线
的直角坐标方程,由直线
的参数方程可知直线过定点,并求得直线的斜率,即可写出直线的普通方程;
(2)把直线的参数方程代入曲线
的普通方程,化为关于
的一元二次方程,利用判别式、根与系数的关系及此时
的几何意义求解即可.
解:(1)因为
,得![]()
∴黄线
的直角坐标方程为![]()
当
时,直线
过定点
,斜率
.
∴直线
的普通方程为
,即![]()
(2)把直线
的参数方程为
代入
,
得
.
设
、
的参数分别为
,所以
,
,则
与
同号,
,则
,即![]()
得
或![]()
∴![]()
∴
的最大值为![]()
【题目】过去五年,我国的扶贫工作进入了“精准扶贫”阶段.目前“精准扶贫”覆盖了全部贫困人口,东部帮西部,全国一盘棋的扶贫格局逐渐形成.到2020年底全国830个贫困县都将脱贫摘帽,最后4335万贫困人口将全部脱贫,这将超过全球其他国家过去30年脱贫人口总和.2020年是我国打赢脱贫攻坚战收官之年,越是到关键时刻,更应该强调“精准”.为落实“精准扶贫”政策,某扶贫小组,为一“对点帮扶”农户引种了一种新的经济农作物,并指导该农户于2020年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,该经济农作物的市场价格和亩产量均具有随机性,且两者互不影响,其具体情况如下表:
该经济农作物亩产量(kg) |
|
| 该经济农作物市场价格(元/kg) |
|
| |
概率 |
|
| 概率 |
|
|
(1)设2020年该农户种植该经济农作物一亩的纯收入为X元,求X的分布列;
(2)若该农户从2020年开始,连续三年种植该经济农作物,假设三年内各方面条件基本不变,求这三年中该农户种植该经济农作物一亩至少有两年的纯收入不少于16000元的概率;
(3)2020年全国脱贫标准约为人均纯收入4000元.假设该农户是一个四口之家,且该农户在2020年的家庭所有支出与其他收入正好相抵,能否凭这一亩经济农作物的纯收入,预测该农户在2020年底可以脱贫?并说明理由.