题目内容

11.已知函数f(x)=|2x-1|+x+$\frac{1}{2}$的最小值为m.
(1)求m的值;
(2)若a,b,c是正实数,且a+b+c=m,求证:2(a2+b2+c2)≥ab+bc+ca-3abc.

分析 (1)写出分段函数,即可求m的值;
(2)利用作差法,即可证明.

解答 (1)解:$f(x)=|{2x-1}|+x+\frac{1}{2}=\left\{{\begin{array}{l}{3x-\frac{1}{2},x≥\frac{1}{2}}\\{-x+\frac{3}{2},x<\frac{1}{2}}\end{array}}\right.$,
所以$f{(x)_{min}}=f({\frac{1}{2}})=1$,即m=1.
(2)证明:由于a3+b3-a2b-ab2=(a2-b2)(a-b)=(a-b)2(a+b)≥0,
由于a+b+c=1,所以a3+b3≥a2b+ab2=ab(a+b)=ab(1-c)=ab-abc,
同理可证:b3+c3≥bc-abc,c3+a3≥ca-abc,
三式相加得2(a3+b3+c3)≥ab+bc+ca-3abc.

点评 本题考查分段函数,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网