题目内容
11.实数x,y,z满足0≤x≤y≤z≤4,如果它们的平方成公差为2的等差数列,则|x-y|+|y-z|的最小可能值为4-2$\sqrt{3}$.分析 利用实数x,y,z满足0≤x≤y≤z≤4,如果它们的平方成公差为2的等差数列,可得:|x-y|+|y-z|=z-x=$\frac{{z}^{2}-{x}^{2}}{z+x}$=$\frac{4}{z+x}$=$\frac{4}{z+\sqrt{{z}^{2}-4}}$,即可得出结论.
解答 解:|x-y|+|y-z|=z-x=$\frac{{z}^{2}-{x}^{2}}{z+x}$=$\frac{4}{z+x}$=$\frac{4}{z+\sqrt{{z}^{2}-4}}$≥$\frac{4}{4+2\sqrt{3}}$=4-2$\sqrt{3}$,
∴|x-y|+|y-z|的最小可能值为4-2$\sqrt{3}$.
故答案为:4-2$\sqrt{3}$.
点评 本题考查等差数列的性质,考查学生的计算能力,正确转化是关键.
练习册系列答案
相关题目
2.已知数列{an}为等比数列,a1=1,q=-2,则a5是( )
| A. | 16 | B. | -16 | C. | 32 | D. | -32 |
16.sin40°cos20°+cos40°sin20°的值是( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
6.下列命题正确的是( )
| A. | 空间中两直线所成角的取值范围是:0°<θ≤90° | |
| B. | 直线与平面所成角的取值范围是:0°≤θ≤90° | |
| C. | 直线倾斜角的取值范围是:0°<θ≤180° | |
| D. | 两异面直线所成的角的取值范围是:0°<θ<90° |