题目内容
(1)求
| BN |
(2)求cos<
| BA1 |
| CB1 |
(3)求证:A1B⊥C1M.
(4)求CB1与平面A1ABB1所成的角的余弦值.
考点:直线与平面所成的角,异面直线及其所成的角,点、线、面间的距离计算
专题:空间位置关系与距离,空间角
分析:(1)建立空间直角坐标系O-xyz.利用向量法能求出|
|.
(2)分别求出
=(-1,-1,2),
=(0,1,2),利用向量法能求出cos<
,
>.
(3)由
=(-1,1,2),
=(
,
,0),能证明A1B⊥C1M.
(4)由
=(
,
,0)是平面A1ABB1的法向量,
=(0,1,2),能求出CB1与平面A1ABB1所成的角的余弦值.
| BN |
(2)分别求出
| BA1 |
| CB1 |
| BA1 |
| CB1 |
(3)由
| A1B |
| C1M |
| 1 |
| 2 |
| 1 |
| 2 |
(4)由
| C1M |
| 1 |
| 2 |
| 1 |
| 2 |
| CB1 |
解答:
(1)
解:如图,建立空间直角坐标系O-xyz.
依题意得B(0,1,0),N(1,0,1),
∴|
|=
=
.
(2)解:依题意得A1(1,0,2),B(0,1,0),
C(0,0,0),B1(0,1,2),
∴
=(-1,-1,2),
=(0,1,2),
•
=3,|
|=
,|
|=
,
∴cos<
,
>=
=
.
(3)证明:依题意,得C1(0,0,2),M(
,
,2),
=(-1,1,2),
=(
,
,0).
∴
•
=-
+
+0=0,
∴
⊥
,∴A1B⊥C1M.
(4)解:∵A1B⊥C1M,AA1⊥C1M,
∴
=(
,
,0)是平面A1ABB1的法向量,
=(0,1,2),
设CB1与平面A1ABB1所成的角为θ,
则sinθ=|cos<
,
>|=|
|=
,
∴cosθ=
=
.
∴CB1与平面A1ABB1所成的角的余弦值为
.
依题意得B(0,1,0),N(1,0,1),
∴|
| BN |
| (1-0)2+(0-1)2+(1-0)2 |
| 3 |
(2)解:依题意得A1(1,0,2),B(0,1,0),
C(0,0,0),B1(0,1,2),
∴
| BA1 |
| CB1 |
| BA1 |
| CB1 |
| BA1 |
| 6 |
| CB1 |
| 5 |
∴cos<
| BA1 |
| CB1 |
| ||||
|
|
| 1 |
| 10 |
| 30 |
(3)证明:依题意,得C1(0,0,2),M(
| 1 |
| 2 |
| 1 |
| 2 |
| A1B |
| C1M |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| A1B |
| C1M |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| A1B |
| C1M |
(4)解:∵A1B⊥C1M,AA1⊥C1M,
∴
| C1M |
| 1 |
| 2 |
| 1 |
| 2 |
| CB1 |
设CB1与平面A1ABB1所成的角为θ,
则sinθ=|cos<
| CB1 |
| C1M |
| ||||||
|
| 1 | ||
|
∴cosθ=
1-
|
3
| ||
| 10 |
∴CB1与平面A1ABB1所成的角的余弦值为
3
| ||
| 10 |
点评:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.
练习册系列答案
相关题目
若方程(a2-a-2)x+(a2+a-6)y+a+1=0表示平行于x轴的直线,则a为( )
| A、-1或2 | B、-1 |
| C、2 | D、不存在 |