题目内容

7.在锐角△ABC中,$B>\frac{π}{6}$,$sin({A+\frac{π}{6}})=\frac{3}{5}$,$cos({B-\frac{π}{6}})=\frac{4}{5}$,则sin(A+B)=$\frac{24}{25}$.

分析 利用同角三角函数的基本关系,两角差的正弦公式,求得sin(A+B)=sin[(A+$\frac{π}{6}$)+(B-$\frac{π}{6}$)]的值.

解答 解:∵锐角△ABC中,$B>\frac{π}{6}$,$sin({A+\frac{π}{6}})=\frac{3}{5}$,$cos({B-\frac{π}{6}})=\frac{4}{5}$,
∴cos(A+$\frac{π}{6}$)=$\sqrt{{1-sin}^{2}(A+\frac{π}{6})}$=$\frac{4}{5}$,sin(B-$\frac{π}{6}$)=$\sqrt{1{-cos}^{2}(B-\frac{π}{6}})$=$\frac{3}{5}$,
则sin(A+B)=sin[(A+$\frac{π}{6}$)+(B-$\frac{π}{6}$)]=sin(A+$\frac{π}{6}$)cos(B-$\frac{π}{6}$)+cos(A+$\frac{π}{6}$)cos(B-$\frac{π}{6}$)]=$\frac{3}{5}•\frac{4}{5}$+$\frac{4}{5}•\frac{3}{5}$=$\frac{24}{25}$,
故答案为:$\frac{24}{25}$.

点评 本同题主要考查同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网