题目内容

9.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为21平万千米.

分析 由题意画出图象,并求出AB、BC、AC的长,由余弦定理求出cosB,由平方关系求出sinB的值,代入三角形的面积公式求出该沙田的面积.

解答 解:由题意画出图象:
且AB=13里=6500米,BC=14里=7000米,
AC=15里=7500米,
在△ABC中,由余弦定理得,
cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{1{3}^{2}+1{4}^{2}-1{5}^{2}}{2×13×14}$=$\frac{5}{13}$,
所以sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12}{13}$,
则该沙田的面积:即△ABC的面积S=$\frac{1}{2}AB•BC•sinB$
=$\frac{1}{2}×6500×7000×\frac{12}{13}$ 
=21000000(平方米)=21(平方千米),
故答案为:21.

点评 本题考查了余弦定理,以及三角形面积公式的实际应用,注意单位的转换,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网