题目内容
3.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,(a0+a2+a4+a6)2-(a1+a3+a5+a7)2值为-2187.分析 令x=-1可得a0-a1+a2-a3+a4-a5+a6 -a7=37,令x=1可得a0+a1+a2+a3+a4+a5+a6 +a7=-1,两式相加、相减可得 a0+a2+a4+a6 和a1+a3+a5+a7 的值,从而求得
(a0+a2+a4+a6)2-(a1+a3+a5+a7)2 的值.
解答 解:∵(1-2x)7=a0+a1x+a2x2+…+a7x7,令x=1可得a0+a1+a2+a3+a4+a5+a6 +a7=-1,
令x=-1可得a0-a1+a2-a3+a4-a5+a6 -a7=37,令x=1可得a0+a1+a2+a3+a4+a5+a6 +a7=-1,
两式相加可得 a0+a2+a4+a6=$\frac{{3}^{7}-1}{2}$,两式相减可得a1+a3+a5+a7=$\frac{{3}^{7}+1}{2}$,
∴(a0+a2+a4+a6)2-(a1+a3+a5+a7)2 =$\frac{{{(3}^{7}-1)}^{2}}{4}$-$\frac{{{(3}^{7}+1)}^{2}}{4}$=-2187,
故答案为:-2187.
点评 本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于基础题.
练习册系列答案
相关题目
14.若函数f(x)=x3-3ax+1在区间(0,1)内有极小值,则a的取值范围是( )
| A. | (0,1) | B. | (0,1] | C. | [0,1) | D. | [0,1] |
11.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
(ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
| 优分 | 非优分 | 总计 | |
| 男生 | 9 | 21 | 30 |
| 女生 | 11 | 9 | 20 |
| 总计 | 20 | 30 | 50 |
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
13.函数f(x)=sin($\frac{π}{4}$-x)cos($\frac{π}{4}$+x)的单调递增区间是( )
| A. | [2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z | B. | [2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z | ||
| C. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z | D. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z |