题目内容
9.已知函数$f(x)=sinxcos2φ+cosxsin2φ(x∈R,0<φ<\frac{π}{2}),f(\frac{π}{2})=\frac{1}{2}$.(1)求f(x)的解析式;
(2)若$f(α+\frac{2π}{3})=-\frac{12}{13},α∈(\frac{π}{2},π)$,求cosα的值.
分析 (1)由条件利用两角和差的三角公式,化简函数的解析式为f(x)=sin(x+2φ),根据f($\frac{π}{2}$)=$\frac{1}{2}$,0<φ<$\frac{π}{2}$,求得φ的值,可得函数的解析式.
(2)根据f(α+$\frac{2π}{3}$)=-sinα=-$\frac{12}{13}$,α∈($\frac{π}{2}$,π),可得sinα=$\frac{12}{13}$,从而求得cosα=-$\sqrt{{1-sin}^{2}α}$ 的值.
解答 解:(1)∵f(x)=sinxcos2φ+cosxsin2φ=sin(x+2φ),
满足f($\frac{π}{2}$)=sin($\frac{π}{2}$+2φ)=cos2φ=$\frac{1}{2}$,0<φ<$\frac{π}{2}$,
∴2φ=$\frac{π}{3}$,φ=$\frac{π}{6}$,f(x)=sin(x+$\frac{π}{3}$).
(2)若$f(α+\frac{2π}{3})=-\frac{12}{13},α∈(\frac{π}{2},π)$,则f(α+$\frac{2π}{3}$)=sin(α+$\frac{2π}{3}$+$\frac{π}{3}$)=-sinα=-$\frac{12}{13}$,α∈($\frac{π}{2}$,π),
∴可得sinα=$\frac{12}{13}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{5}{13}$.
点评 本题主要考查两角和差的三角公式,同角三角函数的基本关系,属于基础题.
练习册系列答案
相关题目
19.已知函数f(x)=($\frac{1}{2}$)x,a、b∈R+,A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{ab}{a+b}$),则A、B、C的大小关系是( )
| A. | A≤B≤C | B. | A≤C≤B | C. | B≤C≤A | D. | C≤B≤A |
20.双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的离心率为( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{3\sqrt{2}}{2}$ |
4.下列各式中,值为$\frac{{\sqrt{3}}}{2}$的是( )
| A. | $\sqrt{\frac{{1+cos{{120}°}}}{2}}$ | B. | ${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$ | ||
| C. | cos42°sin12°-sin42°cos12° | D. | $\frac{{tan{{15}°}}}{{1-{{tan}^2}{{15}°}}}$ |
14.偶函数f(x)(x∈R)满足:f(4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式xf(x)<0的解集为( )
| A. | (-∞,-4)∪(4,+∞) | B. | (-∞,-4)∪(-1,0) | C. | (-4,-1)∪(1,4) | D. | (-∞,-4)∪(-1,0)∪(1,4) |