题目内容
11.已知平面向量$\overrightarrow a,\overrightarrow b$满足$(2\overrightarrow a-\overrightarrow b)•\overrightarrow a=5$,且$|\overrightarrow a|=2,|\overrightarrow b|=3$,则向量$\overrightarrow a$与向量$\overrightarrow b$的夹角余弦值为( )| A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
分析 利用数量积运算性质即可得出.
解答 解:∵平面向量$\overrightarrow a,\overrightarrow b$满足$(2\overrightarrow a-\overrightarrow b)•\overrightarrow a=5$,且$|\overrightarrow a|=2,|\overrightarrow b|=3$,
∴5=$2{\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=2×22-2×3×cos$<\overrightarrow{a},\overrightarrow{b}>$,
解得cos$<\overrightarrow{a},\overrightarrow{b}>$=$\frac{1}{2}$,
则向量$\overrightarrow a$与向量$\overrightarrow b$的夹角余弦值为$\frac{1}{2}$.
故选:C.
点评 本题考查了向量数量积运算性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.在正三棱柱ABC-A1B1C1中,A1A=2AB=2,平面α过定点A,平面α∥平面A1BC,面α∩平面ABC=m,面α∩平面A1C1C=n,则m,n所成角的余弦值为( )
| A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{3}$ |
6.如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
($\stackrel{∧}{y}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$)
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
16.若双曲线C:$\frac{{x}^{2}}{4}$-y2=1的左、右焦点分别为F1,F2,P为双曲线C上一点,满足$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=0的点P依次记为P1、P2、P3、P4,则四边形P1P2P3P4的面积为( )
| A. | $\frac{8\sqrt{5}}{5}$ | B. | 2$\sqrt{5}$ | C. | $\frac{8\sqrt{6}}{5}$ | D. | 2$\sqrt{6}$ |
3.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则下列直线中与平面ACE平行的是( )
| A. | BA1 | B. | BD1 | C. | BC1 | D. | BB1 |
2.已知P为抛物线y2=4x上一个动点,P到其准线的距离为d,Q为圆x2+(y-4)2=1上一个动点,d+|PQ|的最小值是( )
| A. | 2$\sqrt{5}$-1 | B. | 2$\sqrt{5}$-2 | C. | $\sqrt{17}$-1 | D. | $\sqrt{17}$-2 |