ÌâÄ¿ÄÚÈÝ
19£®¶ÔÓÚÍÖÔ²${C_{£¨a£¬b£©}}£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¬b£¾0£¬a¡Ùb£©$£®Èôµã£¨x0£¬y0£©Âú×ã$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}£¼1$£®Ôò³Æ¸ÃµãÔÚÍÖÔ²C£¨a£¬b£©ÄÚ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÈôµãAÔÚ¹ýµã£¨2£¬1£©µÄÈÎÒâÍÖÔ²C£¨a£¬b£©ÄÚ»òÍÖÔ²C£¨a£¬b£©ÉÏ£¬ÔòÂú×ãÌõ¼þµÄµãA¹¹³ÉµÄͼÐÎΪ£¨¡¡¡¡£©| A£® | Èý½ÇÐμ°ÆäÄÚ²¿ | B£® | ¾ØÐμ°ÆäÄÚ²¿ | C£® | Ô²¼°ÆäÄÚ²¿ | D£® | ÍÖÔ²¼°ÆäÄÚ²¿ |
·ÖÎö µãA£¨x0£¬y0£©ÔÚ¹ýµãP£¨2£¬1£©µÄÈÎÒâÍÖÔ²C£¨a£¬b£©ÄÚ»òÍÖÔ²C£¨a£¬b£©ÉÏ£¬¿ÉµÃ$\frac{4}{{a}^{2}}+\frac{1}{{b}^{2}}$=1£¬$\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$¡Ü1£®ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ¿ÉÖª£ºµãB£¨-2£¬1£©£¬µãC£¨-2£¬-1£©£¬µãD£¨2£¬-1£©£¬¶¼ÔÚÈÎÒâÍÖÔ²ÉÏ£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÉèµãA£¨x0£¬y0£©ÔÚ¹ýµãP£¨2£¬1£©µÄÈÎÒâÍÖÔ²C£¨a£¬b£©ÄÚ»òÍÖÔ²C£¨a£¬b£©ÉÏ£¬
Ôò$\frac{4}{{a}^{2}}+\frac{1}{{b}^{2}}$=1£¬$\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$¡Ü1£®
¡à$\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$¡Ü$\frac{4}{{a}^{2}}+\frac{1}{{b}^{2}}$=1£¬
ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ¿ÉÖª£ºµãB£¨-2£¬1£©£¬µãC£¨-2£¬-1£©£¬µãD£¨2£¬-1£©£¬¶¼ÔÚÈÎÒâÍÖÔ²ÉÏ£¬
¿ÉÖª£ºÂú×ãÌõ¼þµÄµãA¹¹³ÉµÄͼÐÎΪ¾ØÐÎPBCD¼°ÆäÄÚ²¿£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌ⣬¿¼²éÁËÊýÐνáºÏ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 3 | B£® | 0 | C£® | -3 | D£® | $\frac{1}{3}$ |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
| ¸¶¿î·½Ê½ | ·Ö1ÆÚ | ·Ö2ÆÚ | ·Ö3ÆÚ | ·Ö4ÆÚ | ·Ö5ÆÚ |
| ƵÊý | 35 | 25 | a | 10 | b |
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©Çó¡°¹ºÂòÊÖ»úµÄ3Ãû¹Ë¿ÍÖУ¨Ã¿È˽ö¹ºÂòÒ»²¿ÊÖ»ú£©£¬Ç¡ºÃÓÐ1Ãû¹Ë¿Í·Ö4ÆÚ¸¶¿î¡±µÄ¸ÅÂÊ£»
£¨¢ó£©ÈôרÂôµêÏúÊÛÒ»²¿Æ»¹û6SÊÖ»ú£¬¹Ë¿Í·Ö1ÆÚ¸¶¿î£¨¼´È«¿î£©£¬ÆäÀûÈóΪ1000Ôª£»·Ö2ÆÚ»ò3ÆÚ¸¶¿î£¬ÆäÀûÈóΪ1500Ôª£»·Ö4ÆÚ»ò5ÆÚ¸¶¿î£¬ÆäÀûÈóΪ2000Ôª£®ÓÃX±íʾÏúÊÛÒ»²¿Æ»¹û6SÊÖ»úµÄÀûÈó£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
| A£® | -$\frac{1}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{1}{2}$ | D£® | $¡À\frac{\sqrt{3}}{2}$ |
| A£® | 42 | B£® | 19 | C£® | 8 | D£® | 3 |