题目内容
18.若不等式|x+1|+|x-3|≥a对任意的实数x恒成立,则实数a的取值范围是(-∞,4].分析 由条件根据绝对值的意义求得|x+2|+|x-3|的最小值为5,从而得到实数a的取值范围.
解答 解:由于|x+1|+|x-3|表示数轴上的x对应点到-1、3对应点的距离之和,它的最小值为4,
不等式|x+1|+|x-3|≥a对任意的实数x恒成立,故a≤4,
故答案为:(-∞,4].
点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
8.
四棱锥P-ABCD的三视图如图所示,则该四棱锥的外接球的表面积为( )
| A. | $\frac{81π}{5}$ | B. | $\frac{81π}{20}$ | C. | $\frac{101π}{5}$ | D. | $\frac{101π}{20}$ |
6.已知x,y满足$\left\{\begin{array}{l}y≥-1\\ x+y≤1\\ y≤x\end{array}\right.$,则z=2x+y的最小值是( )
| A. | -3 | B. | 1 | C. | $\frac{3}{2}$ | D. | 3 |
10.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则关于函数y=f(x),下列说法正确的是( )
| A. | 在x=-1处取得极大值 | B. | 在区间[-1,4]上是增函数 | ||
| C. | 在x=1处取得极大值 | D. | 在区间[1,+∞)上是减函数 |
7.为了加强某站的安全检查,从甲乙丙等5名候选民警中选2名作为安保人员,则甲乙丙中有2人被选中的概率为( )
| A. | $\frac{3}{10}$ | B. | $\frac{1}{10}$ | C. | $\frac{3}{20}$ | D. | $\frac{1}{20}$ |
8.一动圆P与圆A:(x+1)2+y2=1外切,而与圆B:(x-1)2+y2=r2(r>3或0<r<1)内切,那么动圆的圆心P的轨迹是( )
| A. | 椭圆 | B. | 双曲线 | ||
| C. | 椭圆或双曲线一支 | D. | 抛物线 |