题目内容
已知数列{an}的首项a1=1,且点An(an,an+1)在函数y=
的图象上.
(1)求数列{an}的通项公式;
(2)求证:弦AnAn+1的斜率随n的增大而增大;
(3)若数列{bn}满足an•bn=2n,求数列{bn}的前n项和Sn的值.
| x |
| x+1 |
(1)求数列{an}的通项公式;
(2)求证:弦AnAn+1的斜率随n的增大而增大;
(3)若数列{bn}满足an•bn=2n,求数列{bn}的前n项和Sn的值.
考点:数列与函数的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出
-
=1,又
=1,由此能求出an=
.
(2)弦AnAn+1的斜率k=
=
=
,由此能证明弦AnAn+1的斜率随n的增大而增大.
(3)由已知条件得bn=n•2n,由此利用错位相减法能求出数列{bn}的前n项和Sn的值.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| n |
(2)弦AnAn+1的斜率k=
| an+2-an+1 |
| an+1-an |
| ||||
|
| n(n+1) |
| (n+1)(n+2) |
| 1 | ||
1+
|
(3)由已知条件得bn=n•2n,由此利用错位相减法能求出数列{bn}的前n项和Sn的值.
解答:
(1)解:∵数列{an}的首项a1=1,且点An(an,an+1)在函数y=
的图象上,
∴
=an+1,anan+1=an-an+1,
∴
-
=1,又
=1,
∴{
}是以1为首项,1为公差的等差数列.
∴
=1+(n-1)=n.
∴an=
.
(2)证明:由(1)知弦AnAn+1的斜率k=
,
k=
=
=
=
,
n越大,则1+
越小,
越大,
∴弦AnAn+1的斜率随n的增大而增大.
(3)解:∵数列{bn}满足an•bn=2n,an=
,
∴bn=n•2n,
∴Sn=2+2•22+3•23+…+n•2n,①
2Sn=22+2•23+3•24+…+n•2n+1,②
①-②,得:-Sn=2+22+23+…+2n-n•2n+1
=
-n•2n+1
=2-(n+1)•2n+1,
∴Sn=(n+1)•2n+1-2.
| x |
| x+1 |
∴
| an |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴{
| 1 |
| an |
∴
| 1 |
| an |
∴an=
| 1 |
| n |
(2)证明:由(1)知弦AnAn+1的斜率k=
| an+2-an+1 |
| an+1-an |
k=
| ||||
|
| n(n+1) |
| (n+1)(n+2) |
| n |
| n+2 |
| 1 | ||
1+
|
n越大,则1+
| 2 |
| n |
| 1 | ||
1+
|
∴弦AnAn+1的斜率随n的增大而增大.
(3)解:∵数列{bn}满足an•bn=2n,an=
| 1 |
| n |
∴bn=n•2n,
∴Sn=2+2•22+3•23+…+n•2n,①
2Sn=22+2•23+3•24+…+n•2n+1,②
①-②,得:-Sn=2+22+23+…+2n-n•2n+1
=
| 2(1-2n) |
| 1-2 |
=2-(n+1)•2n+1,
∴Sn=(n+1)•2n+1-2.
点评:本题考查数列的通项公式的求法,考查弦的斜率随n的增大而增大的证明,考查数列的前n项和的求法,解题时要注意错位相减法的合理运用.
练习册系列答案
相关题目
| A、M(45,15) |
| B、M(45,16) |
| C、M(46,15) |
| D、M(46,25) |