题目内容

1
22-1
+
1
32-1
+
1
42-1
+…+
1
(n+1)2-1
的值为(  )
A、
n+1
2(n+2)
B、
3
4
-
n+1
2(n+2)
C、
3
4
-
1
2
(
1
n+1
+
1
n+2
)
D、
3
2
-
1
n+1
-
1
n+2
分析:由题意知
1
22-1
+
1
32-1
+
1
42-1
+…+
1
(n+1)2-1
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)  +(
1
3
-
1
5
)+…+ (
1
n
-
1
n+2
)
+(
1
2
-
1
4
)
+(
1
3
-
1
5
)
+…+(
1
n
-
1
n+2
)
],即可得答案.
解答:解:
1
22-1
+
1
32-1
+
1
42-1
+…+
1
(n+1)2-1

=
1
(2+1)(2-1)
+
1
(3+1)(3-1)
+
1
(4+1)(4-1)
+…+
1
(n+1+1)(n+1-1)

=
1
3×1
+
1
4×2
+
1
5×3
+…+
1
(n+2)n

=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)  +(
1
3
-
1
5
)+…+ (
1
n
-
1
n+2
)
+(
1
2
-
1
4
)
+(
1
3
-
1
5
)
+…+(
1
n
-
1
n+2
)
]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)

故选C.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解条.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网