题目内容
| lim |
| n→∞ |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
分析:把求极限的式子利用平方差公式及约分化简得到
(1+
)对其求极限即可得到.
| 1 |
| 2 |
| 1 |
| n |
解答:解:
(1-
)(1-
)(1-
)(1-
)
=
(1-
)(1+
)(1-
)(1+
)(1-
)(1+
)(1-
)(1+
)
=
(1+
)
=
.
故答案为
| lim |
| n→∞ |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
=
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n |
=
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| n |
=
| 1 |
| 2 |
故答案为
| 1 |
| 2 |
点评:本题考查学生认识函数的极限及运算的能力.
练习册系列答案
相关题目