题目内容
(1)计算| lim |
| n→∞ |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 4n2 |
(2)若
| lim |
| n→∞ |
| an2-2n+1 |
| bn+2 |
| a |
| b |
分析:(1)(1-
)(1-
)(1-
)…(1-
)=
•
=
,由此能求出其结果.
(2)2n+
=
,且
(2n+
)=1,由此能求出
=-2.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 4n2 |
| 1 |
| 2 |
| 2n+1 |
| 2n |
| 2n+1 |
| 4n |
(2)2n+
| an2-2n+1 |
| bn+2 |
| (2b+a)n2+2n+1 |
| bn+2 |
| lim |
| n→∞ |
| an2-2n+1 |
| bn+2 |
| a |
| b |
解答:解:(1)(1-
)(1-
)(1-
)…(1-
)=
•
=
,
所以
(1-
)(1-
)(1-
)…(1-
)=
=
.
(2)2n+
=
,
且
(2n+
)=1,
所以
,
即
=-2.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 4n2 |
| 1 |
| 2 |
| 2n+1 |
| 2n |
| 2n+1 |
| 4n |
所以
| lim |
| n→∞ |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 4n2 |
| lim |
| n→∞ |
| 2n+1 |
| 4n |
| 1 |
| 2 |
(2)2n+
| an2-2n+1 |
| bn+2 |
| (2b+a)n2+2n+1 |
| bn+2 |
且
| lim |
| n→∞ |
| an2-2n+1 |
| bn+2 |
所以
|
即
| a |
| b |
点评:本题考查极限的性质和运算,解题时要认真审题,仔细思考,注意合理地进行等价转化.
练习册系列答案
相关题目