ÌâÄ¿ÄÚÈÝ
7£®¸ø³öÏÂÁÐËĸöÃüÌ⣺¢Ùº¯Êýf£¨x£©=|x|-1¼ÈÊÇżº¯Êý£¬ÓÖÊÇ£¨0£¬+¡Þ£©µÄµ¥µ÷µÝÔöº¯Êý£»¢ÚÈô¹ØÓÚxµÄ²»µÈʽ|x-4|+|x+3|£¼aµÄ½â¼¯Êǿռ¯£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬7£©£»
¢ÛÈôº¯Êýf£¨x£©=|x+1|+|x-a|µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ£¬Ôòa=5£»
¢ÜÉ躯Êýf£¨x£©=$\left\{\begin{array}{l}{lg|x-2|£¨x¡Ù2£©}\\{1£¨x=2£©}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+bf£¨x£©+c=0£¨b¡¢c¡ÊR£©Ç¡ÓÐ5¸ö²»Í¬µÄʵÊý½âx1£¬x2£¬x3£¬x4£¬x5£¬Ôòf£¨x1+x2+x3+x4+x5£©=3lg2£®£¨ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊǢ٢ۢܣ®
·ÖÎö ·ÖÎöº¯Êýf£¨x£©=|x|-1µÄµ¥µ÷ÐÔºÍÆæÅ¼ÐÔ£¬¿ÉÅжϢ٣»Çó³ö|x-4|+|x+3|µÄ×îСֵ£¬¿ÉÅжϢڣ»Çó³öº¯Êýf£¨x£©=|x+1|+|x-a|ͼÏó¶Ô³ÆÖáµÄ±í´ïʽ£¬¿ÉÅжϢۣ»¼ÆËãf£¨x1+x2+x3+x4+x5£©µÄÖµ£¬¿ÉÅжϢܣ®
½â´ð ½â£º¢Ùº¯Êýf£¨x£©=|x|-1£¬Âú×ãf£¨-x£©=f£¨x£©£¬¹Êf£¨x£©ÊÇżº¯Êý£¬
µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬f£¨x£©=|x|-1=x-1Êǵ¥µ÷µÝÔöº¯Êý£¬¹ÊÕýÈ·£»
¢Ú|x-4|+|x+3|¡Ý|£¨x-4£©-£¨x+3£©|=7£¬Èô¹ØÓÚxµÄ²»µÈʽ|x-4|+|x+3|£¼aµÄ½â¼¯Êǿռ¯£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬7]£¬¹Ê´íÎó£»
¢ÛÈôº¯Êýf£¨x£©=|x+1|+|x-a|µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ£¬Ôò$\frac{a-1}{2}=2$£¬Ôòa=5£¬¹ÊÕýÈ·£»
¢ÜÉ躯Êýf£¨x£©=$\left\{\begin{array}{l}{lg|x-2|£¨x¡Ù2£©}\\{1£¨x=2£©}\end{array}\right.$µÄͼÏóÈçÏÂͼËùʾ£º![]()
Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+bf£¨x£©+c=0£¨b¡¢c¡ÊR£©Ç¡ÓÐ5¸ö²»Í¬µÄʵÊý½âx1£¬x2£¬x3£¬x4£¬x5£¬
Ôòx1+x2+x3+x4+x5=10£¬
Ôòf£¨x1+x2+x3+x4+x5£©=f£¨10£©=3lg2£¬¹ÊÕýÈ·£®
¹ÊÕýÈ·µÄÃüÌâÓТ٢ڢۢܣ¬
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄÆæÅ¼ÐÔ£¬µ¥µ÷ÐÔ£¬¶Ô³ÆÐÔµÈ֪ʶµã£¬ÄѶÈÖеµ£®
| A£® | 4+$\sqrt{7}$ | B£® | 8+$\sqrt{7}$ | C£® | 4+$\sqrt{3}$+$\sqrt{7}$ | D£® | 8+$\sqrt{3}$+$\sqrt{7}$ |