题目内容

9.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=-x2+ax.
(I)求函数f(x)的解析式;
(II)若函数f(x)为R上的单调减函数,
①求a的取值范围;
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.

分析 (I)当x<0时,-x>0,由已知表达式可求f(-x),根据奇函数性质可求f(x);
(II)①借助二次函数图象的特征及奇函数性质可求a的范围;
②利用奇函数性质及单调递减性质可去掉不等式中的符号“f”,进而可转化为函数最值问题处理.

解答 解:(I)当x<0时,-x>0,又因为f(x)为奇函数,
所以f(x)=-f(-x)=-(-x2-ax)=x2+ax,
所以f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax,x≥0}\\{{x}^{2}+ax,x<0}\end{array}\right.$.
(II)①当a≤0时,对称轴x=$\frac{a}{2}$≤0,所以f(x)=-x2+ax在[0,+∞)上单调递减,
由于奇函数关于原点对称的区间上单调性相同,所以f(x)在(-∞,0)上单调递减,
所以a≤0时,f(x)在R上为单调递减函数,
当a>0时,f(x)在(0,$\frac{a}{2}$)递增,在($\frac{a}{2}$,+∞)上递减,不合题意,
所以函数f(x)为单调减函数时,a的范围为a≤0.
②f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),
又f(x)是奇函数,∴f(m-1)<f(-t-m2),
又因为f(x)为R上的单调递减函数,所以m-1>-t-m2恒成立,
所以$t>-{m}^{2}-m+1=-(m+\frac{1}{2})^{2}+\frac{5}{4}$恒成立,所以t>$\frac{5}{4}$,
即实数t的范围为:($\frac{5}{4}$,+∞).

点评 本题考查函数的奇偶性、单调性及其应用,考查不等式恒成立问题,考查学生分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网