题目内容
17.(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
| 购买意愿强 | 购买意愿弱 | 合计 | |
| 20-40岁 | |||
| 大于40岁 | |||
| 合计 |
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
分析 (1)由茎叶图能完成2×2列联表,由列联表求出K2≈3.46<3.841,从而得到没有95%的把握认为市民是否购买该款手机与年龄有关.
(2)购买意愿弱的市民共有20人,抽样比例为$\frac{5}{20}$=$\frac{1}{4}$,所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.
解答 (本小题满分12分)
解:(1)由茎叶图可得:
| 购买意愿强 | 购买意愿弱 | 合计 | |
| 20~40岁 | 20 | 8 | 28 |
| 大于40岁 | 10 | 12 | 22 |
| 合计 | 30 | 20 | 50 |
所以,没有95%的把握认为市民是否购买该款手机与年龄有关. …(6分)
(2)购买意愿弱的市民共有20人,抽样比例为$\frac{5}{20}$=$\frac{1}{4}$,
所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,
则X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$,
所以分布列为
| X | 0 | 1 | 2 |
| P | $\frac{1}{10}$ | $\frac{3}{5}$ | $\frac{3}{10}$ |
点评 本题考查茎叶图、独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关题目
20.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F到E的渐近线的距离为$\sqrt{3}a$,则E的离心率是( )
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
6.已知数列{an}是等比数列,若${a_2}=1,{a_5}=\frac{1}{8}$,则${a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}}({n∈{N^*}})$的取值范围是( )
| A. | $({\frac{2}{3},2}]$ | B. | $[{1,\frac{8}{3}})$ | C. | $[{2,\frac{8}{3}})$ | D. | $({-∞,\frac{8}{3}})$ |