题目内容

17.某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强购买意愿弱合计
20-40岁
大于40岁
合计
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为X,求X的分布列和数学期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

分析 (1)由茎叶图能完成2×2列联表,由列联表求出K2≈3.46<3.841,从而得到没有95%的把握认为市民是否购买该款手机与年龄有关.
(2)购买意愿弱的市民共有20人,抽样比例为$\frac{5}{20}$=$\frac{1}{4}$,所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.

解答 (本小题满分12分)
解:(1)由茎叶图可得:

购买意愿强购买意愿弱合计
20~40岁20828
大于40岁101222
合计302050
由列联表可得:K2=$\frac{50(20×12-10×8)^{2}}{30×20×28×22}$≈3.46<3.841,
所以,没有95%的把握认为市民是否购买该款手机与年龄有关. …(6分)
(2)购买意愿弱的市民共有20人,抽样比例为$\frac{5}{20}$=$\frac{1}{4}$,
所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,
则X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{3}^{1}}{{C}_{5}^{2}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$,
所以分布列为
X012
P$\frac{1}{10}$$\frac{3}{5}$$\frac{3}{10}$
数学期望为E(X)=0×$\frac{1}{10}$+1×$\frac{3}{5}$+2×$\frac{3}{10}$=$\frac{6}{5}$.  …(12分)

点评 本题考查茎叶图、独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网