题目内容

20.已知(x-1)n的二项展开式的奇数项二项式系数和为64,若(x-1)n=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,则a1等于(  )
A.192B.448C.-192D.-448

分析 (x-1)n=(-2+x+1)n=${∁}_{n}^{0}(-2)^{n}$+${∁}_{n}^{1}(-2)^{n-1}(x+1)$+${∁}_{n}^{2}(-2)^{n-2}$(x+1)2+…+${∁}_{n}^{n}(x+1)^{n}$,由于(x-1)n的二项展开式的奇数项二项式系数和为64,可得$64=\frac{{2}^{n}}{2}$,解得n.即可得出.

解答 解:(x-1)n=(-2+x+1)n=${∁}_{n}^{0}(-2)^{n}$+${∁}_{n}^{1}(-2)^{n-1}(x+1)$+${∁}_{n}^{2}(-2)^{n-2}$(x+1)2+…+${∁}_{n}^{n}(x+1)^{n}$=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n
∵(x-1)n的二项展开式的奇数项二项式系数和为64,∴$64=\frac{{2}^{n}}{2}$,解得n=7.
则a1=${∁}_{7}^{1}(-2)^{6}$=448.
故选:B.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网