题目内容
5.圆x2+y2-2x-2y+1=0上的点到直线x-y=2的距离的最大值是$\sqrt{2}$+1.分析 把圆的方程化为标准方程后,找出圆心坐标和半径r,利用点到直线的距离公式求出圆心到已知直线的距离d,求出d+r即为所求的距离最大值.
解答 解:把圆的方程化为标准方程得:(x-1)2+(y-1)2=1,
所以圆心坐标为(1,1),圆的半径r=1,
所以圆心到直线x-y=2的距离d=$\frac{|1-1-2|}{\sqrt{2}}$=$\sqrt{2}$,
则圆上的点到直线x-y=2的距离最大值为d+r=$\sqrt{2}$+1.
故答案为:$\sqrt{2}$+1
点评 本题主要考查直线与圆的位置关系,当考查圆上的点到直线的距离问题,基本思路是:先求出圆心到直线的距离,最大值时,再加上半径,最小值时,再减去半径.
练习册系列答案
相关题目
9.
如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象与二次函数y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1的图象交于A(x1,0)和B(x2,1),则f(x)的解析式为( )
| A. | f(x)=sin($\frac{1}{6}$x+$\frac{π}{3}$) | B. | f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$) | C. | f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$) | D. | f(x)=sin($\frac{π}{2}$x+$\frac{π}{6}$) |
15.设集合M={x|x2-x-6<0},N={x|x-1>0},则M∩N=( )
| A. | (1,2) | B. | (1,3) | C. | (-1,2) | D. | (-1,3) |