题目内容
从4个不同的独唱节目和2个不同的合唱节目中选出4个节目编排一个节目单,要求最后一个节目必须是合唱,则这个节目单的编排方法共有 ( )
(A)14种 (B)48种 (C)72种 (D) 120种.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆的标准方程;
(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,,
①证明:平分线段(其中为坐标原点),
②当值最小时,求点的坐标.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆()的左、右焦点分别为、,点,过点且与垂直的直线交轴负半轴于点,且.
(1)求证:△是等边三角形;
(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
(3)设过(2)中椭圆的右焦点且不与坐标轴垂直的直线与交于、两点,是点关于轴的对称点.在轴上是否存在一个定点,使得、、三点共线,若存在,求出点的坐标;若不存在,请说明理由.
设等差数列满足,,的前项和的最大值为,则=__________.
(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.
某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前个月的需求量(万吨)与的函数关系为,并且前4个月,区域外的需求量为20万吨.
(1)试写出第个月石油调出后,油库内储油量(万吨)与的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定的取值范围.
斜率为的直线与焦点在轴上的椭圆交于不同的两点、.若点、在轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为 .
若,且,则 .
已知数列满足,则使不等式成立的所有正整数的集合为 .
已知的取值如下表:
从散点图分析,与线性相关,且回归方程为,则实数的值为 .