题目内容

函数f(x)=
1
x
-log2(
1+x
1-x
)
的零点个数为
2个
2个
分析:先求函数的定义域,再判函数的奇偶性,再证函数的单调性,最后用函数零点的判定定理.
解答:解:要使函数有意义,只需
1+x
1-x
>0
且x≠0,解得:{x|-1<x<0或0<x<1},
所以定义域关于原点对称,而f(-x)=-【
1
x
-log2(
1+x
1-x
)】
,所以f(-x)=-f(x),所以f(x)是奇函数;
因为f′(x)=[
1
x
-log2(
1+x
1-x
)]′=-
1
x2
-
1
1+x
1-x
ln2
(
1+x
1-x
)′
=-
1
x2
-
1
1+x
1-x
ln2
2
(1-x)2
=-[
1
x2
+
2
(1-x)2ln2
]

当0<x<1时,f′(x)<0,所以f(x)在(0,1)上为减函数,当-1<x<0时,f′(x)<0,所以f(x)在(-1,0)上为减函数,
因为f(
1
2
)=2- log23  >0
f(
2
3
)=
3
2
log25  <0

由函数零点的判定定理知:函数f(x)在(
1
2
2
3
)
有零点,又因为f(x)在(0,1)上为减函数,所以f(x)在(0,1)上有且只有一个零点,
因为f(x)是奇函数,所以f(x)在(-1,0)上有且只有一个零点,
所以函数f(x)=
1
x
-log2(
1+x
1-x
)
有两个零点.
故答案为:2
点评:本题考查函数的零点问题,用到了函数的奇偶性,函数的单调性,函数零点的判定定理.
本题的关键:①函数是奇函数,对称区间上的零点个数一样;②单调函数若在区间上有零点则仅有一个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网