题目内容
已知数列{an}的通项公式是an=n2sin(
π),则a1+a2+a3+…+a2014=( )
| 2n+1 |
| 2 |
A、
| ||
| B、2013×1007 | ||
| C、2014×1007 | ||
| D、2015×1007 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得an=n2sin(
π)=
,所以a1+a2+a3+…+a2014=22-12+42-32+…+20142-20132,由此能求出结果.
| 2n+1 |
| 2 |
|
解答:
解:∵
π=nπ+
,n∈N*,
∴an=n2sin(
π)=
,
∴a1+a2+a3+…+a2014
=22-12+42-32+…+20142-20132
=1+2+3+…+2014
=
=2015×1007.
故选:D.
| 2n+1 |
| 2 |
| π |
| 2 |
∴an=n2sin(
| 2n+1 |
| 2 |
|
∴a1+a2+a3+…+a2014
=22-12+42-32+…+20142-20132
=1+2+3+…+2014
=
| 2014(1+2014) |
| 2 |
=2015×1007.
故选:D.
点评:本题考查数列的前2014项的和的求法,是中档题,解题时要认真审题,注意数列的通项公式的合理运用.
练习册系列答案
相关题目
函数y=x-lnx的单调递增区间是( )
| A、(0,1) |
| B、(-∞,1) |
| C、(1,2) |
| D、(1,+∞) |
已知P(AB)=
,P(A)=
,P (B)=
,则P(B|A)=( )
| 3 |
| 10 |
| 3 |
| 5 |
| 3 |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
如果双曲线的渐近线方程为y=±
x,则离心率为( )
| 3 |
| 4 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知A(-
,0),B是圆F:(x-
)2+y2=36(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )
| 1 |
| 2 |
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
将一个钢球置于由6根长度为
的钢管焊接成的正四面体的钢架内,那么,这个钢球的最大体积为( )
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知f′(x)是定义在R上的函数f(x)的导函数,且f(x)=f(5-x),(
-x)f′(x)<0,若x1<x2,x1+x2<5,则下列结论中正确的是( )
| 5 |
| 2 |
| A、f(x1)<f(x2) |
| B、f(x1)+f(x2)>0 |
| C、f(x1)+f(x2)<0 |
| D、f(x1)>f(x2) |
已知二次函数y=x2-2ax+1在区间(2,3)内是单调函数,则实数a的取值范围是( )
| A、a≤2或a≥3 |
| B、2≤a≤3 |
| C、a≤-3或a≥-2 |
| D、-3≤a≤-2 |