题目内容

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,则z=3x+y的最大值为18.

分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最大值.

解答 解:约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,对应的平面区域如图:
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,则由图象可知当直线y=-3x+z经过点A时直线y=-3x+z的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{y=4}\\{3x-2y=6}\end{array}\right.$得A($\frac{14}{3}$,4),
此时z=3×$\frac{14}{3}$+4=18,
故答案为:18.

点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网