题目内容
已知点是椭圆上的一点。F1、F2是椭圆C 的左右焦点。
(1)若∠F1PF2是钝角,求点P 横坐标x0的取值范围;
(2)求代数式的最大值。
(1) (2)
解关于的一元二次不等式.
知向量,,则的最大值为
一个三棱锥的顶点在空间直角坐标系O-xyz中的坐标分别是(1,-2,-3),(0,1,0),
(0,1,1),(0,0,1),则该四面体的体积为( )
A. 1 B. C. D.
过点作一直线与椭圆相交于A、B两点,若点恰好为弦的中点,则所在直线的方程为 .
经过点且在两轴上截距相等的直线是( )
A. B. C. 或 D.或
正方体-中,与平面ABCD所成角的余弦值为( )
A. B. C. D.
已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 ( )
A B C D
已知△ABC中,,,,那么角A等于 ( )
A.135° B.90° C.45° D.30°