题目内容
6.已知抛物线E的焦点为F,准线为l,过F的直线m与E交于A,B两点,C,D分别为A,B在l上的射影,M为AB的中点,若m与l不平行,则△CMD是( )| A. | 等腰三角形且为锐角三角形 | B. | 等腰三角形且为钝角三角形 | ||
| C. | 等腰直角三角形 | D. | 非等腰的直角三角形 |
分析 画出图形,利用抛物线的简单性质判定选项即可.
解答
解::∵点A在抛物线y2=2px上,F为抛物线的焦点,C,D分别为A,B在l上的射影,M为AB的中点,
NM是M到抛物线准线的垂线,垂足为N,准线与x轴的交点为E,如图:
∴△CMD中,CN=ND,所以三角形CMD是等腰三角形,
可得∠CFD=90°,MN>EF,
可得:∠CMD<90°.
则△CMD是等腰三角形且为锐角三角形.
故选:A.
点评 本题给出抛物线过焦点的弦在准线上的射影,求射影点对焦点的张角的大小,着重考查了用平面几何理解抛物线的定义的知识点,属于基础題.
练习册系列答案
相关题目
17.某淘宝商城专营店经销某种产品,已知每个月的利润Y(单位:万元)是关于该月的交易量X(单位:件)的一次函数,当X=150时,Y=4,且X每增加100,Y增加2.该店记录了连续12个月的交易量X,整理得如表:
(1)求a的值;
(2)求这12个月的月利润(单位:万元)的平均数;
(3)假定以这12个月记录的各交易量的频率作为各交易量发生的概率,求2017年3月份该产品利润不低于5万元的概率.
| 交易量X(件) | 150 | 180 | 200 | 250 | 320 |
频率 | $\frac{1}{12}$ | $\frac{1}{6}$ | a | $\frac{1}{4}$ | $\frac{1}{6}$ |
(2)求这12个月的月利润(单位:万元)的平均数;
(3)假定以这12个月记录的各交易量的频率作为各交易量发生的概率,求2017年3月份该产品利润不低于5万元的概率.
16.在区间[0,1]上任选两个数x和y,则$y≥\sqrt{1-{x^2}}$的概率为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $1-\frac{π}{6}$ | D. | $1-\frac{π}{4}$ |