题目内容

已知
sinα-cosα
2sinα+3cosα
=
1
5
,则tanα的值是(  )
A、±
8
3
B、
8
3
C、-
8
3
D、无法确定
考点:三角函数的化简求值
专题:三角函数的求值
分析:首先,给定的等式左侧分子分母同除以cosα,然后,转化成关于tanα的等式,求解即可.
解答: 解:∵
sinα-cosα
2sinα+3cosα
=
1
5

tanα-1
2tanα+3
=
1
5

∴tanα=
8
3

故选:B.
点评:本题重点考查了同脚三角函数基本关系式,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网