题目内容

设函数f(x)=g(x)+x2,曲线y=g(x)在x=1处的切线方程为y=2x+1,则f(1)+f′(1)=(  )
A、6B、7C、8D、9
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:先根据曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,可得g′(1)=2,g(1)=3,再利用函数f(x)=g(x)+x2,可知f′(x)=g′(x)+2x,从而求出f(1),和f′(1),再求和即可.
解答: 解:∵曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,
∴g′(1)=2,g(1)=3,
∵函数f(x)=g(x)+x2
∴f′(x)=g′(x)+2x
∴f′(1)=g′(1)+2
∴f′(1)=2+2=4,f(1)=g(1)+1=4,
∴f(1)+f′(1)=8
故选:C.
点评:本题考查的重点是曲线在某点处切线的斜率,解题的关键是利用导数的几何意义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网