ÌâÄ¿ÄÚÈÝ

10£®Èçͼ1£¬Ôڱ߳¤Îª2µÄÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬½«¡÷BCDÑØ¶Ô½ÇÏßBDÕÛÆðµ½¡÷B'CDµÄλÖã¬Ê¹Æ½ÃæBC'D¡ÍÆ½ÃæABD£¬EÊÇBDµÄÖе㣬FA¡ÍÆ½ÃæABD£¬ÇÒFA=2$\sqrt{3}$£¬Èçͼ2£®
£¨1£©ÇóÖ¤£ºFA¡ÎÆ½ÃæBC'D£»
£¨2£©ÇóÆ½ÃæABDÓëÆ½ÃæFBC'Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©ÔÚÏß¶ÎADÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£¿Èô´æÔÚ£¬Çó$\frac{AM}{AD}$µÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃC¡äE¡ÍBD£¬ÓÖÆ½ÃæBC'D¡ÍÆ½ÃæABD£¬ÇÒÆ½ÃæBC'D¡ÉÆ½ÃæABD=BD£¬ÔÙÓÉ̾̾´¹Ö±µÄÐÔÖʿɵÃC¡äE¡ÍABD£¬½áºÏÒÑÖª¿ÉµÃFA¡ÎC¡äE£¬ÓÉÏßÃæÆ½ÐеÄÅж¨¿ÉµÃFA¡ÎÆ½ÃæBC'D£»
£¨2£©ÒÔDBËùÔÚÖ±ÏßΪxÖᣬAEËùÔÚÖ±ÏßΪyÖᣬEC¡äËùÔÚÖ±ÏßΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó³öËùÓõãµÄ×ø±ê£¬ÇóµÃÆ½ÃæFBC¡äÓëÆ½ÃæABDµÄÒ»¸ö·¨ÏòÁ¿£¬ÓÉÁ½·¨ÏòÁ¿Ëù³É½ÇµÄÓàÏÒÖµ¿ÉµÃÆ½ÃæABDÓëÆ½ÃæFBC'Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©¼ÙÉèÔÚÏß¶ÎADÉÏ´æÔÚM£¨x£¬y£¬z£©£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£¬ÓÉ$\overrightarrow{AM}=¦Ë\overrightarrow{AD}$ÇóµÃMµÄ×ø±ê£¬µÃµ½$\overrightarrow{C¡äM}$£¬ÓÉ$\overrightarrow{m}•\overrightarrow{C¡äM}=0$¼ÓÒÔÅжϣ®

½â´ð £¨1£©Ö¤Ã÷£º¡ßBC=CD£¬EΪBDµÄÖе㣬¡àC¡äE¡ÍBD£¬
ÓÖÆ½ÃæBC'D¡ÍÆ½ÃæABD£¬ÇÒÆ½ÃæBC'D¡ÉÆ½ÃæABD=BD£¬
¡àC¡äE¡ÍABD£¬
¡ßFA¡ÍÆ½ÃæABD£¬¡àFA¡ÎC¡äE£¬¶øC¡äE?Æ½ÃæBC'D£¬FA?Æ½ÃæBC'D£¬
¡àFA¡ÎÆ½ÃæBC'D£»
£¨2£©½â£ºÒÔDBËùÔÚÖ±ÏßΪxÖᣬAEËùÔÚÖ±ÏßΪyÖᣬEC¡äËùÔÚÖ±ÏßΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÔòB£¨1£¬0£¬0£©£¬A£¨0£¬$-\sqrt{3}$£¬0£©£¬D£¨-1£¬0£¬0£©£¬F£¨0£¬-$\sqrt{3}$£¬$2\sqrt{3}$£©£¬
C¡ä£¨0£¬0£¬$\sqrt{3}$£©£¬
¡à$\overrightarrow{BF}=£¨-1£¬-\sqrt{3}£¬2\sqrt{3}£©$£¬$\overrightarrow{BC¡ä}=£¨-1£¬0£¬\sqrt{3}£©$£®
ÉèÆ½ÃæFBC¡äµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}=£¨x£¬y£¬z£©$£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BF}=-x-\sqrt{3}y+2\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{BC¡ä}=-x+\sqrt{3}z=0}\end{array}\right.$£¬È¡z=1£¬Ôò$\overrightarrow{m}=£¨\sqrt{3}£¬1£¬1£©$£®
ÓÖÆ½ÃæABDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{n}=£¨0£¬1£¬1£©$£®
¡àcos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{5}¡Á\sqrt{2}}=\frac{\sqrt{10}}{5}$£®
ÔòÆ½ÃæABDÓëÆ½ÃæFBC'Ëù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{10}}{5}$£»
£¨3£©½â£ºÏß¶ÎADÉϲ»´æµãM£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£®
¼ÙÉèÔÚÏß¶ÎADÉÏ´æÔÚM£¨x£¬y£¬z£©£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£¬
Éè$\overrightarrow{AM}=¦Ë\overrightarrow{AD}$£¬Ôò£¨x£¬y$+\sqrt{3}$£¬z£©=¦Ë£¨-1£¬$\sqrt{3}$£¬0£©=£¨-¦Ë£¬$\sqrt{3}¦Ë$£¬0£©£¬
¡àx=-¦Ë£¬y=$\sqrt{3}£¨¦Ë-1£©$£¬z=0£®
Ôò$\overrightarrow{C¡äM}$=£¨-¦Ë£¬$\sqrt{3}£¨¦Ë-1£©$£¬-$\sqrt{3}$£©£®
ÓÉ$\overrightarrow{m}•\overrightarrow{C¡äM}=0$£¬µÃ$-\sqrt{3}¦Ë+\sqrt{3}¦Ë-\sqrt{3}=0$£¬¼´$-\sqrt{3}=0$´íÎó£®
¡àÏß¶ÎADÉϲ»´æµãM£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÆ½ÃæÆ½ÐеÄÅж¨£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ºÍ˼άÄÜÁ¦£¬ÑµÁ·ÁËÀûÓÿռäÏòÁ¿Çó½â¶þÃæ½ÇµÄÆ½Ãæ½Ç£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø